
SOME PROPERTIES OF THE HEAT-TRANSFER PROCESS IN A COMPRESSED 

GAS WITH CONSIDERATION OF THERMAL FLUX RELAXATION 
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Some solutions of the gas dynamics equations with thermal conductivity are exam- 
ined with consideration of thermal flux relaxation and nonlinear dependence of 
the thermal conductivity coefficient and thermal flux relaxation time on temper- 
ature and density of the medium. 

i. In describing intense heat exchange, in place of the Fourier law, which postulates 
proportionality of the thermal flux to the temperature gradient, a mathematical model can 
be used which considers thermal flux relaxation and relies on the equation 

#w 
"r i W = - - x g r a d T ,  (i) 

at 

which dates back to Maxwell [i]. For constant • and T it is widely used for description of 
heat transport in rarefied gases, in hereditarily elastic materials, and in thermoelasticity 
problems (see [2-9] and bibliography therein). Results obtained with this expression agrees 
well with experimental data on the distribution of thermal pulses in solids at low temperatures 
[i0]. Recently, interest in Eq. (i) has increased because of its proposed use to describe 
electron thermal conductivity in high-temperature plasma [11-14]. It should be noted that 
in this case Eq. (i) becomes nonlinear, since g and ~ depend on the thermodynamic parameters 
of the plasma. For example, for a completely ionized plasma, over a quite wide parameter 
range one may take ~ - T 5/2, �9 - T3/=/p. 

Many studies have investigated heat transport in a nonmoving medium in the linear case 
(at ~ = const, �9 = const) (see, for example, [2-9, 15, 16] and bibliography therein). The 
temperature dependence of • and m was considered in [11-14, 17]. 

2. In real physical problems the interaction of thermal and gas dynamic problems very 
often plays an important role. In the case of conventional quasilinear thermal conductivity 
(Fourier law at • = • p)) properties of gas dynamic flows with consideration of heat trans- 
fer have been studied quite thoroughly (see [18-24]). When Eq. (i) is used in place of the 
Fourier law, the question naturally arises of the degree to which results obtained previously 
are transferrable to such a description of heat transfer. 

The present study will consider some solutions of the system of gas dynamics equations 
with thermal conductivity in the form of Eq. (I), which can be written in mass Lagrangian 
variables in the one-dimensional planar case in the following form: 

O / 1 ~  Ov . Ov _. Op . 

at ~ - - ~ ) = - ~ m  ' at am ' 

a~ a~ a ~  a ~  = _ ~  at .  
at P am . a m  a t  ' Om 

(2) 

We will consider the gas ideal, p = pRT, e = cvT = RT/(~ - I); as assume that the thermal 
conductivity and thermal flux relaxation time depend on temperature and density in the fol- 
lowing manner: x = x0T~pb+1, �9 = ToTalpbl; n0, r0, a, b, al, b i are constants; for a complet- 
ely ionized plama a = 5/2, a l = 3/2, b = 0, b I = -i. 

3. We will consider solutions of system (2) in the form of traveling waves, propagating 
with a constant mass velocity D. Just as in [21, 25], we limit ourselves to the case of a 
constant background with zero temperature, i.e., we assume a background with T = 0, v = v0, 
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9 : P0, P = 0, W = 0. Assuming that the solution depends only on the combination Dt - m, we 
transform to the dimensionless variable $ and new dimensionless functions: 

.... ( D t - - m )  • ~+~ 9~-~-~; "~(D -- 9o/9(m, t); 

v(~) = v (m, t) ooD-~; "p(~.) = p (m, t) 9oD-~; 

(~) = W (m, t) 92oD-"; T (~) =: T (m, t) p~oRD-t 

From Eq. (2) we obtain a system of ordinary differential equations: 

d~ _ dv dv d p .  1 dT - dv 

age 

where 60 is a dimensionless parameter: 

(3) 

(4) 

8o = ~o• 

With consideration of the background values system (4) can be reduced to three algebraic ex- 
pressions 

v =  VoH- 1 --TI; T = ~1(1 --rl); W =-- 

and a single ordinary differential equation 

y- -1  ( l - - '~) (~  y - - l )  
2 ( ? +  1) ? +  1 (5) 

( ) _ 2 ( v - 1 )  "(1 v+lv-1 

d~ For ?____T_., ~,-4- 1 ~m--b,,,,, --'~)"~ (~ ? V l  ).+_-~a-o-~ (1 __'~)a(1__2~) 
(6) 

We will consider in greater detail the case corresponding to a totally ionized plasma. 
At a= 5/2, a I = 3/2, b = 0, b I = -i the parameter 60 = x0g0 -IR2, and Eq. (6) reduces to the 
form 

y--I 
n d~ y §  1 y +  1 

d--~ = 2 [ ( ? +  1)~o+ 2(V-- 1)] (1 -~)1/2~3/2 (n --  nl)(n - -  ~ )  ' (7) 

where 

= - I)I + -2) + I) 5 (8) 

2[ (?+  1)~o+ 2(7--  1)1 

We note that the radicand in Eq. (8) is always pEsitive for y > 1 and 0 ~ DI,2 ~ i. Analysis 
of various possibilities for expanding the roots ni,2 in (y - l)/(y + i) shows that for 1 < 
y < 3, 0 < 80 < 2(3 - y)/(y + i) the form of the integral curves of Eq. (7) is that shown 
in Fig. la. _Figure Ib shows integral curves for 80 = 0 and ~ within the same range. If we 
assume that nl corres_ponds to the sign (+) in_Eq. (8) while D2 corresponds to (-), then as 
80 § 0 the quantity nl tends to unity, while ~2 + 1/2. 

The form of the integral curves for the case 1 < y < 3, 60 = 2(3 - y)/(~ + i) is shown 
in Fig. 2a. Figure 2b shows the corresponding curve for y = 3, 80 = 0. Integral curves for 
the case 80 >(3 - y)/(y + i), 80 > 0, in particular, for any values 80 > 0 at y a 3 are shown 
in Fig. 3a. As in the previous figures, Fig. 3b shows curves for 80 = 0, y > 3. 

4. In the case of the diffusion approximation (Fourier law) the integral curves under- 
go a rotation at the point where the velocity of the traveling wave D becomes equal to the 
isothermal mass Lagrangian speed of sound c = P~Ri_ (see Fig. ib, 2b, 3b). At T R 3 the in- 
tegral curves reach values behind the shock wave B = (Y - l)/(y + i) before ths rotation 
point and there exist continuous solutions, which as ~ +-~ take on the value q = i, while 
as ~ ~ +~, ~ = (y - l)/(y + i) (in the future we will term such solutions "solutions with 
shock wave type structure"). 

922 



l-- 

q'-I ~]t 

T+I 

~, : I - - - ! - -  -r- 

b ~ , .  

Fig. i. Qualitative character of integral curves of 
Eq. (7) for cases: a) i < ~ < 3, 0 < 80 < 2(3 - y)/ 
(u + i); b) i < y < 3, 80 = 0. 

The more complex behavior of the solutions of Eq. (7) as compared to the case 80 = 0 
is related to the fact that in a gas with heat transport in the form of Eq. (i) there exist 
two propagation speeds for small perturbations (see, for example, [7, 8, 25]). We will find 
the characteristics of Eq. (2). To do this, we rewrite the expression in the form 

0u + A 0u = B, 
Ot Om 

J/!il ,O2o oOtl 
where 

011 B :  0 0 . 

- - W / ,  

Equating to zero the determinant det(A - XE), where E is a unit matrix, we obtain 

o r  

;~ --X~ (~ (y - -  1)/(R,) + "fp~RT) + ( ' 7 -  1)9~T/x = 0 

;~ - -  ;~ (c~ + Vc ~) + c~c~ = O, 

where c z = ~(7 - I)/(R~) is the mass velocity of heat propagation [4-6]. We write equa- 
tions for the characteristics of system (2) in the form dm/dt = ln, where I n are roots of 
Eq. (9), having the sense of the propagation speed of small perturbations and weak discon- 
tinuities: 

~ =  c~ + r c~ +_ / ( c~ + ~,c' ) 2 
2 , 2 - -  c~c~ = 

(9) 

c~-+,-Vc ~ + 1 V(c~_vc~)~+4(v_l)c2c~ ' (10) 
2 - T  

.~ __ ~ + .ec ~ 1 V(c~ -.ec~) ~ + 4 ( v -  1) c~c~. 
2 2 

It can be shown that the denominator on the right side of Eq. (6) vanishes if the speed 
of motion of the traveling wave D is equal to one of the velocities of small perturbation 
progation given by Eq. (I0). To do this it is sufficient to reduce this denominator to the 
form 

D-4 ~0 - - ~, ~ 1 ~la~ b, (1 - -  rl) a' [ O  ~ - -  O ~ (?c  ~ + c~) 4:- c'~c~]. 
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Fig. 2. Qualitative character of integral curves of Eq. 
for cases: a) i < y < 3, 8o = 2(3 - X)/(X + i); b) X = 3, 

80 : 0. 

(7) 

As z + 0 (c z § ~) the quantity X I + =, and by expanding the expressions for k~ in a series 
in powers of c2/c~ and neglacting terms of order O(cU/c~), it is simple to obtain from Eq. 
(i0) the fact that X2 tends to the isothermal speed of sound, X 2 + c. 

5. The series of figures ib, 2b, 3b have been taken from [21], which described in de- 
tail the properties of such traveling wave type solutions of the gas dynamics equations with 
ordinary nonlinear thermal conductivity (Fourier law). Therefore, we will consider in greater 
detail the differences of the solutions for the cases 80 = 0 and 80 > 0. 

Considering that $ increases wit h increasing t, it can easily be seen that departure 
from the constant initial background q = i along the integral curve is impossible for 80 > 0. 
If a point belongs to the unperturbed background, then the gas parameters at that point can 
change only discontinuously. In examining the shock wave structure in the gas, where heat 
transfer in the,form of Eq. (I) plays a role in the dissipation process, at these parameter 
values on the wave front there is a discontinuity in the physical quantities which would not 
occur in a gas with conventional nonlinear thermal conductivity. 

For X > 3 in a gas with conventional thermal conductivity the shock wave structure is 
continuous, the front being "spread" over an infinite width. In a gas with thermal conduc- 
tivity in the form of Eq. (i) the shock wave structure also contains an infinitely long 
"tail," but includes a discontinuity in quantities on the wave front. 

For X = 3 the shock wave structure in a gas with ordinary thermal conductivity is_contin- 
uous, and the front width is finite. In a gas with thermal flux relaxation the value q = 
(7 - 1)/(7 + i), corresponding to the state behind the shock wave is reached at a finite point 
only for 8o = 2(3 - X)/(7 + i), i < 7 < 3, while for larger 8o the width of the front "spread- 
ing" is infinite. But nevertheless a discontinuity in the physical quantities still remains 
on the wave front. 

_ At lower values of 8o q + (X - 1)/(7 + i) only as $ +-~, therefore in the final state 
q = (7 - i)/(7 + i) can be obtained only discontinuously. Considering the existence of an 
additional discontinuity from the initial state we find that the shock wave structure in this 
class includes two discontinuities in the physical quantities, related to the presence in 
the medium of two speeds of "sound," Eq. (I0). 

6. Solutions with two discontinuities were also obtained in numerical calculations of 
self-similar solutions of system (2) of the power type. 

If initial conditions for system (2) are specified in the form 

T(m, O)= W(m, O)=: v(m, O)= O, p(m, O)= Oo, 
with boundary conditions 

W (O, t ) =  Wot g, v(O, t ) =  vote~ 

then at n0 = g/3, n0a - n o - n - g = 0, n0a z = i, where n o = 2n0, n = g/3 + I, the solution 
of the problem is self-similar. With the replacement of variables 

~4nlw1/3 ~2/3. m:-~o, wo eo , T(m,  t )=f(S) tn~ p~l~;  

W(m, t) : :  m(S)Wote; p ( m ,  t) = 6 ( S ) p o ;  ( ! i )  
v(m, t) :- o:(S) t"~ po 1/3 
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Fig. 3. Qualitative character of integral curves of 
Eq. (7) for cases: a) ~0 > 0, ~0 > 2(3 - y)/(~ + i); 
b) y > 3, ~o = 0. 

system (2) takes on the form 

(§ - - n S  = ~'; 7 no~ - -  nS~ '  = - -  ( ~ 7  + f ' 8 ) ;  

(+) no f n----i--- Sf" - -  6[nS _L ~ '  = O; 
y--1 y--1 

( g ~  - -  nS~' )  + ~f'  + ~ = O, 

where the prime denotes a derivative with respect to the new self-similar variable S; ~ = 
~o fa6b+i, Xo = x0R'a-ip0-2a/3+b-i/aW~(a-i)/3; ~ = ~0 fai6bi, ~o = ~oR-aipobi-2ai/3W~ ai/3. 

Initial and boundary conditions take on the form 

(i2) 

If we now solve system (12) for the derivatives, then in the denominator of each ex- 
pression we will have the main determinant of the system 

A = ~ (nS)~ [(nS)~, - y6V] -- ~[(nS) ~ -  6 %  
y ~ l  

We note that in the dimensionless self-evident variables of Eq. (Ii) the instantaneous 
velocity of motion of a profile point 0 = dm/dt = nS, the spped of sound c = ~/~, and the 
speed of heat propagation c i = /(y - i)~/{, so that 

? - - 1  

It is evident that a vanishes if the velocity of motion of the wave is equal tothe velocity 
of propagation of small perturbations. 

For parameter values corresponding to a completely ionized plasma (a = 5/2, a i = 3/2, 
b = 0, b i = -i) the self-similarity conditions are satisfied at g = i, n0 = 1/3. Analysis 
of system (12) reveals that at t 0 # 0 there is a discontinuity in physical values on the wave 
front, just as in the travelling wave type solutions. 

Steady state self-similar profiles of the physical quantities obtained by numerical cal- 
culations of system (2) with initial and boundary conditions at parameter values corresponding 
to a completely ionized plasma for s 0 = i, • = i00 are presented in Fig. 4. Two discontinu- 
ities in the solution are clearly visible in Fig. 4b. It is also evident that increase in 
the parameter ~0 may produce a change in regime from TV-I to TV-II (see [18]), related to 
a decrease in the effective speed of thermal wave propagation (see [14]). 

Thus, depending on the value of the thermal flux relaxation time �9 qualitatively dif- 
ferent regimes of heat propagation exist in a moving medium. An additional discontinuity 
in the physical quantities is introduced in the solution, related to the given method of 
describing heat transfer. 
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Fig. 4. Steady-state self-similar physical quantity profiles at 
s 0 = i, ~0 = i00 and various ~0: a) ~0 = 0; b) 5; c) I000. 

NOTATION 

x, spatial coordinate; m, mass Lagrangian coordinate; t, time; T, temperature; p, dens- 
ity; v, velocity; p, pressure; W, thermal flux; • thermal conductivity coefficient; i = pz, 
mass thermal conductivity coefficient; T, thermal flux relaxation time; R, universal gas con- 
stant; 7, adiabatic index; c V = R/(y - i), specific heat at constant volume; e, specific in- 
ternal energy; c, isothermal speed of sound; ci, speed of heat propagation; D, speed of travel- 
ing wave motion; S, self-similar independent variable; f, ~, 6, =, self-similar functions for 
temperature, thermal flux, density, and velocity. 
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PERTURBATION-WAVE PROPAGATION IN PETROLEUM CONTAINING TAR 

V. A. Baikov and R. N. Bakhtizin UDC 532.535.2:532.135 

A study is made on nonlinear-wave propagation in petroleum containing tar. 

Recent studies have shown that high-viscosity petroleum containing much tar shows re- 
laxation behavior [I, 2], which is due to clusters consisting of hundreds or more macromole- 
cules. Such a medium resembles a conglomerate material [3] in having local deformation 
viscosity due to the compressibility and the elasticity of these particles, which leads to 
pressure relaxation. In the propagation of a nonstationary wave in such a medium, there may 
be an effect from the spread in the impact momentum, as has been found in experiments [4]. 

The following is a system of equations describing the planar one-dimensional motion of 
such a medium, which includes the equations of continuity and motion together the Tait equa- 
tion for each phase [5] 

091 091v~ - O, 09----2-2~ 092v-----2-"-~= O, 
Ot Ox Ot Ox 

o divi Opi 
Pi = P ! g i ,  92 == P2~ zti + ae  --~ 1, 9 i  dt :'- - - a i  Ox F~, 

p~ ~ 

9 2 - -  
d2u2 
dt 

~2 - - ~ - -  + F~, F~ =- aolao2K~ (v~ - -  vl), 

n~ [ \  o~ ) - -  ' - - ~ -  Ot +v~-3-E' ~=1' 2. 

(i) 
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